Copper & Copper alloy Powders
FOR FUTURE TECHNICAL APPLICATIONS
Content

03 General Introduction
03 Applications
04 Metal powders
05 Morphology
06 CUBROTEC
07 ROGAL® Copper GK
08 ROGAL® Bronze GK
09 ROGAL® Bronze GS
10 ROGAL® Brass GS
11 ROGAL® COPPER GK FOR AM
12 ROGAL® BRONZE GK FOR AM
13 Symbols
General Introduction

Ever since there has been metallurgy, a wide range of metals and alloys have been applied by many different techniques.

Schlenk Metallic Pigments GmbH, a member of Carl Schlenk AG, offers perfect solutions through its portfolio of atomized copper and copper alloy powders.

SCHLENK works in close cooperation with customers to provide the best product quality and service for established and for future applications.

As one of the leading powdered metal suppliers we support the following markets:

- bearings
- friction and brake linings
- contact materials
- compounds
- soldering and joining materials
- blasting abrasive materials
- lubricants
- powder metallurgy
- sintering materials
- additive manufacturing
- chemical-technical applications
- and other similar niche applications

Applications
Metal powders

SCHLENK metal powders are based on copper & copper alloys. The powder production process includes the following steps: Smelting, alloying (bronze and brass), classification, homogenization and packaging.

BRONZE POWDER

Bronze is an alloy composed of copper and tin. In powder metallurgy, in addition to the standard alloy CuSn10, bronzes with copper contents of approx. 85 - 95% are used.

Using air atomization, irregularly shaped bronze powder is produced from the molten metal. This is available in various particle size distributions as Rogal® Bronze Powder GS*.

When small amounts of phosphor are added (max. 0.4%), spherical bronze powder is produced. This material is also used in powder metallurgy and is known as Rogal® Bronze Powder GK*.

COPPER POWDER

In the area of metallic materials, SCHLENK copper powders are produced from high purity electrolytic copper or refined copper (high purity of copper).

Spherical copper powders are produced through melting with the addition of small amounts of phosphor (max. 0.4%) and by air atomization. They are available as Rogal® Copper Powder GK* in various particle size distributions.

Further grinding in a ball mill generates lamellar copper powder, known as Cubrotec. This product is used in carbon brushes and various technical processes.

BRASS POWDER

Brass is an alloy composed of copper and zinc. The following alloys are commonly used:

- CuZn8 (Rogal® Brass Powder I GS*)
- CuZn18 (Rogal® Brass Powder II GS*)
- CuZn30 (Rogal® Brass Powder III GS*)

Other compositions are available with individual, agreed upon specifications. Air atomization of molten brass produces irregularly shaped metal powders.

Brass alloy powders of various compositions also serve as the starting material for production of „gold bronze pigments“ for the printing ink, paint and plastics industries.

* GK = spherical powders GS = irregular powders
Morphology

SPHERICAL SHAPE

The particle shape depends on process parameters such as composition, spray medium, surface tension of the molten material. If air atomization is used, copper is generally spherical.

The spherical shape of Rogal® Bronze Powder GK is achieved with the addition of small amounts of phosphor (max. 0.4%) which has a deoxidizing effect.

IRREGULAR SHAPE

The irregular shape of Rogal® Bronze Powder GS and Rogal® Brass Powder GS is achieved with the addition of alloyed zinc.

LAMELLAR SHAPE

The grinding process gives metal powders in a ball mill a lamellar form. The lamellar shape (so called „Flakes“) is typically for the technical copper powder CUBROTEC.
Cubrotec

Lamellar copper powders for use in contact materials, lubricants and in the chemical industry are produced when air atomized copper powder is processed using ball milling procedures.

<table>
<thead>
<tr>
<th>Product name</th>
<th>Copper content *1 (%)</th>
<th>D50 value *2 (μm)</th>
<th>Grease content *3 (%)</th>
<th>Sieve analysis *4 (%)</th>
<th>Apparent density *5 (g/cm³)</th>
<th>Flow properties *6</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubrotec 5000</td>
<td>min. 98</td>
<td>approx. 38</td>
<td>max. 0.3</td>
<td>>45μm: max. 6</td>
<td>approx. 1</td>
<td>not flowable</td>
<td></td>
</tr>
<tr>
<td>Cubrotec 6000</td>
<td>min. 98</td>
<td>approx. 34</td>
<td>max. 0.2</td>
<td>>45μm: max. 5</td>
<td>approx. 1</td>
<td>not flowable</td>
<td></td>
</tr>
<tr>
<td>Cubrotec 7001</td>
<td>min. 95</td>
<td>approx. 14</td>
<td>approx. 1.4</td>
<td>>75μm: traces</td>
<td>approx. 0.7</td>
<td>not flowable</td>
<td></td>
</tr>
<tr>
<td>Cubrotec 7002</td>
<td>min. 96</td>
<td>approx. 20</td>
<td>approx. 0.6</td>
<td>>75μm: traces</td>
<td>approx. 0.8</td>
<td>not flowable</td>
<td></td>
</tr>
<tr>
<td>Cubrotec 8000</td>
<td>min. 95</td>
<td>approx. 4</td>
<td>approx. 0.5</td>
<td>>45μm: traces</td>
<td>approx. 0.8</td>
<td>not flowable</td>
<td></td>
</tr>
<tr>
<td>Cubrotec 8001</td>
<td>approx. 95</td>
<td>approx. 3</td>
<td>approx. 1.5</td>
<td>>45μm: traces</td>
<td>approx. 0.6</td>
<td>not flowable</td>
<td></td>
</tr>
</tbody>
</table>

Rogal® Copper GK

Smelting and atomization are used to produce copper powders from highly pure refined or electrolytic copper. In the air atomization process used by SCHLENK spherical particles are formed. Then they are classified into the required particle size distributions.

<table>
<thead>
<tr>
<th>Product name</th>
<th>Copper content *1 (%)</th>
<th>Phosphor content *1 (%)</th>
<th>Sieve analysis *2 (%)</th>
<th>Apparent density *3 (g/cm³)</th>
<th>Flow properties *4</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogal Copper GK 0/25</td>
<td>min. 99</td>
<td>max. 0.4</td>
<td>>25μm: max. 5</td>
<td>approx. 5</td>
<td>not flowable</td>
<td> </td>
</tr>
<tr>
<td>Rogal Copper GK 0/50</td>
<td>min. 99</td>
<td>max. 0.4</td>
<td>>50μm: max. 5</td>
<td>approx. 5</td>
<td>flowable</td>
<td> </td>
</tr>
<tr>
<td>Rogal Copper GK 0/63</td>
<td>min. 99</td>
<td>max. 0.4</td>
<td>>63μm: max. 5</td>
<td>approx. 5</td>
<td>flowable</td>
<td> </td>
</tr>
<tr>
<td>Rogal Copper GK 50/100</td>
<td>min. 99</td>
<td>max. 0.4</td>
<td>>100μm: max. 5 <50μm: max. 10</td>
<td>approx. 5</td>
<td>flowable</td>
<td> </td>
</tr>
<tr>
<td>Rogal Copper GK 0/250</td>
<td>min. 99</td>
<td>max. 0.4</td>
<td>>250μm: max. 5</td>
<td>approx. 5</td>
<td>flowable</td>
<td> </td>
</tr>
<tr>
<td>Rogal Copper GK 0/315</td>
<td>min. 99</td>
<td>max. 0.4</td>
<td>>315μm: max. 5</td>
<td>approx. 5</td>
<td>flowable</td>
<td> </td>
</tr>
</tbody>
</table>

Different fractions out of a particle size range 0/315 μm can be produced. Phosphorus contents up to 0.4 % on demand.
Rogal® Bronze GK

Alloying and atomization of copper, tin and phosphor in air produces spherically shaped bronze powder. The standard alloy contains approx. 90% copper, 10% tin and small amounts of phosphor. Special alloys and their respective particle size distributions are available with customer specific specifications, and are ensured through effective process and quality control.

<table>
<thead>
<tr>
<th>Product name</th>
<th>Copper content *1 (%)</th>
<th>Tin content *1 (%)</th>
<th>Phosphor content *1 (%)</th>
<th>Sieve analysis *2 (%)</th>
<th>Apparent density *3 (g/cm³)</th>
<th>Flow properties *4</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogal Bronze GK 0/25</td>
<td>approx. 90</td>
<td>approx. 10</td>
<td>max. 0.4</td>
<td>>25μm: max. 5</td>
<td>approx. 5</td>
<td>not flowable</td>
<td>bearings</td>
</tr>
<tr>
<td>Rogal Bronze GK 0/80</td>
<td>approx. 90</td>
<td>approx. 10</td>
<td>max. 0.4</td>
<td>>80μm: max. 5</td>
<td>approx. 5</td>
<td>flowable</td>
<td>spherical shape</td>
</tr>
<tr>
<td>Rogal Bronze GK 0/125</td>
<td>approx. 90</td>
<td>approx. 10</td>
<td>max. 0.4</td>
<td>>125μm: max. 5</td>
<td>approx. 5</td>
<td>flowable</td>
<td>bearings</td>
</tr>
<tr>
<td>Rogal Bronze GK 80/180</td>
<td>approx. 90</td>
<td>approx. 10</td>
<td>max. 0.4</td>
<td>>180μm: max. 5 <80μm: max. 10</td>
<td>approx. 5</td>
<td>flowable</td>
<td>brake linings</td>
</tr>
<tr>
<td>Rogal Bronze GK 0/250</td>
<td>approx. 90</td>
<td>approx. 10</td>
<td>max. 0.4</td>
<td>>250μm: max. 5</td>
<td>approx. 5</td>
<td>flowable</td>
<td>bearings</td>
</tr>
<tr>
<td>Rogal Bronze GK 0/180-01</td>
<td>approx. 89</td>
<td>approx. 11</td>
<td>max. 0.4</td>
<td>>180μm: max. 5</td>
<td>approx. 5</td>
<td>flowable</td>
<td>bearings</td>
</tr>
<tr>
<td>Rogal Bronze GK 0/63-03</td>
<td>approx. 96</td>
<td>approx. 4</td>
<td>max. 0.4</td>
<td>>63μm: max. 5</td>
<td>approx. 5</td>
<td>flowable</td>
<td>bearings</td>
</tr>
</tbody>
</table>

Different fractions out of a particle size range 0/315 μm can be produced. Further variations of alloys are possible. Phosphor contents up to 0.4 % on demand.
Rogal® Bronze GS

Alloying and atomization of copper, tin and zinc in air produces irregularly shaped bronze powder. The standard alloy contains approx. 88% copper, 10% tin and 2% zinc. Special alloys and their respective particle size distributions are available with customer specific specifications, and are ensured through effective process and quality control.

<table>
<thead>
<tr>
<th>Product name</th>
<th>Copper content *1 (%)</th>
<th>Tin content *1 (%)</th>
<th>Zinc content *1 (%)</th>
<th>Sieve analysis *2 (%)</th>
<th>Apparent density *3 (g/cm³)</th>
<th>Flow properties *4</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogal Bronze GS 0/32</td>
<td>approx. 88</td>
<td>approx. 10</td>
<td>approx. 2</td>
<td>>32μm: max. 5</td>
<td>approx. 3</td>
<td>not flowable</td>
<td>![Gear] ![Machined] ![Powder] ![Blast]</td>
</tr>
<tr>
<td>Rogal Bronze GS 0/32-01</td>
<td>approx. 85</td>
<td>approx. 11</td>
<td>approx. 4</td>
<td>>32μm: max. 5</td>
<td>approx. 5</td>
<td>not flowable</td>
<td>![Gear] ![Machined] ![Powder] ![Blast]</td>
</tr>
<tr>
<td>Rogal Bronze GS 0/63</td>
<td>approx. 88</td>
<td>approx. 10</td>
<td>approx. 2</td>
<td>>63μm: max. 5</td>
<td>approx. 3</td>
<td>not flowable</td>
<td>![Gear] ![Machined] ![Powder] ![Blast]</td>
</tr>
<tr>
<td>Rogal Bronze GS 0/160</td>
<td>approx. 88</td>
<td>approx. 10</td>
<td>approx. 2</td>
<td>>160μm: max. 5</td>
<td>approx. 3</td>
<td>flowable</td>
<td>![Gear] ![Machined] ![Powder] ![Blast]</td>
</tr>
<tr>
<td>Rogal Bronze GS 0/200-03</td>
<td>approx. 89</td>
<td>approx. 10</td>
<td>max. 1</td>
<td>>200μm: max. 5</td>
<td>approx. 3.8</td>
<td>flowable</td>
<td>![Gear] ![Machined] ![Powder] ![Blast]</td>
</tr>
<tr>
<td>Rogal Bronze GS 0/160-04</td>
<td>approx. 84</td>
<td>approx. 15</td>
<td>max. 1</td>
<td>>160μm: max. 5</td>
<td>approx. 3.8</td>
<td>flowable</td>
<td>![Gear] ![Machined] ![Powder] ![Blast]</td>
</tr>
<tr>
<td>Rogal Bronze GS 45/100-05</td>
<td>approx. 87</td>
<td>approx. 10</td>
<td>approx. 3</td>
<td>>100μm: max. 5</td>
<td>approx. 3</td>
<td>flowable</td>
<td>![Gear] ![Machined] ![Powder] ![Blast]</td>
</tr>
<tr>
<td>Rogal Bronze GS 100/200-05</td>
<td>approx. 87</td>
<td>approx. 10</td>
<td>approx. 3</td>
<td>>200μm: max. 5<45μm: max. 15</td>
<td>approx. 3</td>
<td>flowable</td>
<td>![Gear] ![Machined] ![Powder] ![Blast]</td>
</tr>
</tbody>
</table>

Different fractions out of a particle size range 0/315 μm can be produced. Further variations of alloys are possible.
Rogal® Brass GS

Brass is an alloy made of copper and zinc in various compositions. Air atomization of the molten material results in irregularly shaped powders. Common compositions are brass I (approx. 92%Cu/8%Zn), brass II (approx. 82%Cu/18% Zn) and brass III (approx. 70%Cu/30%Zn)

<table>
<thead>
<tr>
<th>Product name</th>
<th>Copper content *1 (%)</th>
<th>Zinc content *1 (%)</th>
<th>Sieve analysis *2 (%)</th>
<th>Apparent density *3 (g/cm³)</th>
<th>Flow properties *4</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogal Brass I GS 0/63</td>
<td>approx. 92</td>
<td>approx. 8</td>
<td>>63μm: max. 5</td>
<td>approx. 3</td>
<td>flowable</td>
<td></td>
</tr>
<tr>
<td>Rogal Brass II GS 0/250</td>
<td>approx. 82</td>
<td>approx. 18</td>
<td>>250μm: max. 5</td>
<td>approx. 3</td>
<td>flowable</td>
<td></td>
</tr>
<tr>
<td>Rogal Brass II GS 0/200-01</td>
<td>approx. 80</td>
<td>approx. 20</td>
<td>>200μm: max. 5</td>
<td>approx. 3</td>
<td>flowable</td>
<td></td>
</tr>
<tr>
<td>Rogal Brass III GS 0/160</td>
<td>approx. 70</td>
<td>approx. 30</td>
<td>>160μm: max. 5</td>
<td>approx. 3</td>
<td>flowable</td>
<td></td>
</tr>
</tbody>
</table>

Different fractions out of a particle size range 0/500 μm can be produced. Further variations of alloys are possible.
Rogal® Copper GK for Additive Manufacturing

SCHLENK offers special products of its portfolio of Rogal® Copper GK for a wide range of modern era applications of additive manufacturing.

<table>
<thead>
<tr>
<th>Product name</th>
<th>Particle Size *2</th>
<th>Sieve residue *3 (µm/%)</th>
<th>Apparent Density *4 (g/cm³)</th>
<th>Tap Density *5 (g/cm³)</th>
<th>Flow rate *6 (s/50g)</th>
<th>Recommended Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogal Copper GK 0/10 VP/50347</td>
<td>~ 4 ~ 8 ~ 15</td>
<td>> 25 / max. 1</td>
<td>~ 3</td>
<td>~ 5</td>
<td>not flowable</td>
<td></td>
</tr>
<tr>
<td>Rogal Copper GK 10/25 VP/50522</td>
<td>~ 13 ~ 20 ~ 27</td>
<td>> 25 / max. 5</td>
<td>~ 4.1</td>
<td>~ 5</td>
<td>not flowable</td>
<td></td>
</tr>
<tr>
<td>Rogal Copper GK 0/25</td>
<td>~ 8 ~ 16 ~ 25</td>
<td>> 25 / max. 5</td>
<td>~ 4.4</td>
<td>~ 5.5</td>
<td>not flowable</td>
<td></td>
</tr>
<tr>
<td>Rogal Copper GK 10/50 VP/50487</td>
<td>~ 21 ~ 36 ~ 52</td>
<td>> 50 / max. 5</td>
<td>~ 4.6</td>
<td>~ 5</td>
<td>~ 11</td>
<td></td>
</tr>
<tr>
<td>Rogal Copper GK 0/50</td>
<td>~ 16 ~ 32 ~ 55</td>
<td>> 50 / max. 5</td>
<td>~ 4.6</td>
<td>~ 5.3</td>
<td>~ 12</td>
<td></td>
</tr>
<tr>
<td>Rogal Copper GK 0/63</td>
<td>~ 19 ~ 39 ~ 63</td>
<td>> 63 / max. 5</td>
<td>~ 4.7</td>
<td>~ 5.4</td>
<td>~ 12</td>
<td></td>
</tr>
<tr>
<td>Rogal Copper GK 0/80</td>
<td>~ 20 ~ 46 ~ 78</td>
<td>> 80 / max. 5</td>
<td>~ 5</td>
<td>~ 5.4</td>
<td>~ 12</td>
<td></td>
</tr>
<tr>
<td>Rogal Copper GK 45/100</td>
<td>~ 57 ~ 79 ~ 105</td>
<td>>100 / max. 5</td>
<td>~ 5</td>
<td>~ 5.3</td>
<td>~ 13</td>
<td></td>
</tr>
<tr>
<td>Rogal Copper GK 0/160</td>
<td>~ 45 ~ 84 ~ 135</td>
<td>>160 / max. 5</td>
<td>~ 4.8</td>
<td>~ 5</td>
<td>~ 15</td>
<td></td>
</tr>
</tbody>
</table>

Different fractions out of a particle size range 0/315 µm can be produced.

Chemical properties:
- Copper content: min. 99 %
- Phosphor content: max. 0.02 %
- Total oxygen content: max. 1.0 %

Images:
- Thermal management materials
- Additive manufacturing
- Conductive materials
Rogal® Bronze GK for Additive Manufacturing

SCHLENK offers special products of its portfolio of Rogal® Bronze GK for a wide range of modern era applications of additive manufacturing.

<table>
<thead>
<tr>
<th>Product name</th>
<th>Tin content *1 (%)</th>
<th>Particle Size *2</th>
<th>Sieve residue *3 (µm/%)</th>
<th>Apparent Density *4 (g/cm³)</th>
<th>Tap Density *5 (g/cm³)</th>
<th>Flow rate *6 (s/50g)</th>
<th>Recommended Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogal Bronze GK 0/10 VP/50468</td>
<td>~ 10</td>
<td>~ 4</td>
<td>~ 8</td>
<td>~ 12</td>
<td>> 25 / max. 1</td>
<td>~ 3</td>
<td>~ 4</td>
</tr>
<tr>
<td>Rogal Bronze GK 0/25</td>
<td>~ 10</td>
<td>~ 6</td>
<td>~ 13</td>
<td>~ 21</td>
<td>> 25 / max. 5</td>
<td>~ 4</td>
<td>~ 5</td>
</tr>
<tr>
<td>Rogal Bronze GK 10/45 VP/50468</td>
<td>~ 10</td>
<td>~ 16</td>
<td>~ 28</td>
<td>~ 43</td>
<td>> 45 / max. 5</td>
<td>~ 5</td>
<td>~ 5.1</td>
</tr>
<tr>
<td>Rogal Bronze GK 0/63-03</td>
<td>~ 4</td>
<td>~ 20</td>
<td>~ 41</td>
<td>~ 62</td>
<td>> 63 / max. 5</td>
<td>~ 5</td>
<td>~ 5.3</td>
</tr>
<tr>
<td>Rogal Bronze GK 0/63-06</td>
<td>~ 6</td>
<td>~ 20</td>
<td>~ 41</td>
<td>~ 62</td>
<td>> 63 / max. 5</td>
<td>~ 5</td>
<td>~ 5.3</td>
</tr>
<tr>
<td>Rogal Bronze GK 0/80</td>
<td>~ 10</td>
<td>~ 26</td>
<td>~ 52</td>
<td>~ 79</td>
<td>> 80 / max. 5</td>
<td>~ 5</td>
<td>~ 5.3</td>
</tr>
<tr>
<td>Rogal Bronze GK 32/125</td>
<td>~ 10</td>
<td>~ 45</td>
<td>~ 79</td>
<td>~ 121</td>
<td>> 125 / max. 5 < 32 / max. 5</td>
<td>~ 5.2</td>
<td>~ 5.5</td>
</tr>
</tbody>
</table>

Different contents of tin and phosphor and fractions out of a particle size range 0/315 µm can be produced.
Friction and brake linings
Contact materials
Surface metallization
Chemical technical applications
Technical plastics, compounds
Lubricants
Soldering and joining techniques
Powder metallurgy, sintering materials
Blasting abrasive techniques
Binder Jetting (BJT)
Powder laser deposition (LMD)
Coldspray
Electron beam powder bed fusion (EBM)
Selective laser sintering (SLS)
Friction Welding
Laser Beam powder bed fusion (LB-PBF), Selective Laser Melting (SLM), Direct Metal Laser Sintering (DMLS)
Contact:

Armin Mauser
Head of Technology Center Metallic Materials
Phone: + 49 9156 9294 24
Fax: + 49 9156 12 11
Mobile: + 0170 450 3012
E-Mail: armin.mauser@schlenk.de

Data in this publication is based on careful investigations and is intended for information only. All information shall not be binding, shall carry no warranty as to certain ingredients, as to the fitting for a special purpose, as to the merchantability, or as to the industrial property rights of third parties. Any and all users are obliged to carry out tests on their own authority as well as to check the suitability and the danger of the respective product for a particular application. SCHLENK assumes no liability in this regard; neither to the exactness nor to the completeness of the data. We apply our General Sales Conditions to be found on www.schlenk.com
Sales Organisation:

EUROPE

GERMANY:
SCHLENK METALLIC PIGMENTS GMBH
Barnsdorfer Hauptstraße 5
D-91154 Roth/Germany
Phone: + 49 9171 808 0
Mobil: + 49 170 781 024 9
E-Mail: oliver.huss@schlenk.de

ITALY:
PIGMENTI METALLICI SRL
Viale Leonardo Da Vinci, 97
l-20090 Trezzano sul naviglio (MI)
Phone: + 39 02 48 40 58 43
Fax: + 39 02 48 40 80 21
E-Mail: p.levaggi@schlenk.it

CZECH REPUBLIC:
ALBO SCHLENK s.r.o.
Tovarni 532
CZ-68771 Bojkovice
Phone: + 420 572 6105 51
Fax: + 420 572 641498
E-Mail: bojkovice@alboschlenk.cz

SLOVENIA:
KAMNIK-SCHLENK D.O.O.
Fuzine 9
SI-1241 Kamnik
Phone: + 386 1 830 9440
Fax: + 386 1 830 9443
E-Mail: info@kamnik-schlenk.si

AMERICA

USA:
SCHLENK METALLIC PIGMENTS
40 Nickerson Road
ASHLAND/MA. 01721-1912
Phone: + 1 508 881 9147
Fax: + 1 508 881 1278
E-Mail: thomas.schaller@schlenkusa.com

ASIA

CHINA:
SCHLENK METALLIC PIGMENTS
(SHANGHAI) CO. LTD.
Room 2101, Building A
N. 158 Fu Yue Fortune Plaza
Rongyue Rd, Songjiang District
Shanghai 201600, China
Phone: + 86 21 5774 9940
Fax: + 86 21 5774 9990
E-Mail: stephen.shu@schlenk.com